MBRCGI Websites
UAE Innovates
Edge of Government

Japan's Solutions for Future Tsunami Events

11 minute read
After the tsunami, Japan enhances the resilience of its cities with engineering, evacuation and warning mechanisms. Natural disasters are accompanied by other hazardous phenomena. Tsunamis are accompanied by earthquakes and collapses. Efforts include relocating centers and building dams. Leveraging artificial intelligence, forecasting and nuclear infrastructures. The goal is to take advantage of nature without compromising it.
Share this content

Add to Favorite ♡ 0

After the tragic experience of tsunami, the Japanese government has been working for years to improve the resilience of its cities through engineering solutions such as improved design of buildings and walls, upgrading evacuation mechanisms and warning the population of the approaching disaster.

Natural disasters often do not come alone, as they are accompanied by other equally dangerous phenomena. Perhaps tsunami is a good example, as these massive ocean waves may accompany earthquakes, landslides, or even volcanic eruptions.

These incidents - despite their rarity - have devastating effects when they hit a populated coastal area, where waves rise to tens of meters, carrying tons of water washing away everything that stands in its way. This is exactly what happened in 2011 in eastern Japan, following the strongest earthquake in the country's history, as a magnitude of 9, followed by the strongest tsunami, with waves exceeding 40 meters high struck several towns on the Pacific coast, especially within the Tohoku region. As local authorities use disaster prevention administrative radio systems to communicate evacuation information, the Ministry of Internal Affairs and Communications conducted a survey in the aftermath of tsunami, only to find that 35% of those affected did not hear the audio information from the speakers.

Kuril Trench, deep and narrow caused by the convergence of two tectonic plates, lies in the Pacific Ocean Northwest. Residents of coastal areas along its length are at risk, as in the event of a hurricane, they will have no more than 10 minutes to go to safe places, and this is not enough in large gatherings.

Faced with these challenges, the Japanese government has intensified its efforts to prepare. Over the years, it has implemented a series of projects, most notably moving population centres as far from the coast as possible, and building dams as lines of defence that protect the town from torrential waters.

A decade after the disaster, the government has published a plan with a new 10-year goal of reducing the number of fatalities in the event of a massive earthquake along the Kuril and Japan Trenches by 80%. First, the government identified 108 most vulnerable areas that vary between towns, cities, and villages distributed over 7 prefectures.

Choshi City in Chiba Prefecture is one of the designated areas. In this city, tsunami evacuation towers and roads for evacuation are being constructed, and the government has decided to raise the subsidy for the cost from one-half to one-third. Meanwhile, Sendai City in Miyagi Prefecture has invested in an emergency announcement system that uses fully automated drones to urge people to evacuate when tsunami alerts are issued. The two drones will split into two groups and call for evacuation from 50 meters above the ground along an approximately 8 km section of the coastal area.

The drone system uses a dedicated private wireless communication network, which is free from disruption even in the event of a disaster. An infrared camera mounted on a drone takes pictures of disaster victims and other objects while in flight and transmits them to the city's disaster response headquarters, enabling them to assess the damage in remote areas safely and in real-time.

the city of Kawasaki embraced another technological experiment, as its local authorities collaborated with private and academic institutions to develop the use of artificial intelligence to predict tsunamis and develop response plans. The project combines two simulations: incoming tsunamis and evacuation behaviour. The tsunami flooding simulation is based on high-resolution modelling technology that relies on supercomputers to accurately reproduce the flood dynamics. Using observational data, for example, from off-shore sensors the simulation estimates factors like the wave height and the arrival time. The evacuation simulation on the other hand combines a city-specific model with a simulation of human behaviour and movement, allowing researchers to evaluate the human risks caused by a tsunami. This could be used to create better evacuation routes, and minimise crowding and panic.

To establish early warning channels for the rapid evacuation of the population, the government has worked to develop international warning systems, which are accompanied by radio and television broadcasts and a denser network of loudspeakers. In the future, it is expected to work with the police and fire departments to share information on impassable routes, fire, and power outage conditions.

On the other hand, nuclear facilities, in particular, have in recent years tended to be sited far from the coast and been designed to enter a "safe mode" as soon as an earthquake is detected.

Engineering solutions remain more effective, such as the development and installation of enormous building shock absorbers, sliding walls, and foundation pads to withstand the immense stresses and strains imposed on them during violent events like earthquakes.

In some cases, the government has found a solution that revolves around the construction of massive sea walls with a height exceeding 10 metres to protect highly populated areas, or by designing monstrous floodgates that are intended to channel, tamper, or redirect incoming tsunami waves away from critical infrastructure and population centres. These can be absolutely huge, up to 15 meters tall.

However, there is a risk that none of these efforts will be feasible if the scale of the disaster expands and prediction of this type of disaster is not scientifically feasible, so the government's focus today is on designing infrastructure that is easy to maintain. Furthermore, experience has shown that sea walls are ineffective in protecting cities, but they generate a sense of reassurance among the population. This is a sufficient reason why walls are among the most protective measures at least now.

Drones will support rescue efforts and mitigate the impact of disasters, and designed buildings will contribute to hurricane resilience, albeit to a limited extent. Artificial intelligence models will provide a baseline that can be built upon to develop more effective evacuation plans and reduce cases of crowding and panic. All these attempts are only the first steps taken by the government of Japan to protect its citizens without hindering the course of nature.


Subscribe to Ibtekr to stay updated on the latest government initiatives, courses, tools and innovations
Register Now
Subscribe to the Ibtekr's mailing list | every week
Innovators Mailing List
We share with more than 20,000 innovators weekly newsletter that monitors global innovations from all over the world
Subscription Form (en)
More from Ibtekr

How data dashboards are adding accountability to public safety

To establish transparency and accountability, American cities have begun launching electronic data dashboards that collect all information about crimes, the performance of law enforcement agencies, and make facts available to their citizens to keep them informed of the work progress and make them part of the decision-making process.

 · · 13 November 2023

AI and drone tech help local governments in road maintenance

Because the quality of roads is a major factor in the safety of their users, several countries, such as the United Kingdom and Lithuania, have started using advanced technologies to make road inspections and maintenance easier and more efficient. Drones, artificial intelligence, sensors, and modern high-resolution cameras that can cover hundreds of thousands of kilometres and reach where humans fail are the most prominent of these technologies.

 · · 13 November 2023

Tax authorities use AI powered tools to assess property

To improve property assessment and control related violations, as well as reduce attempts to evade paying full tax fees, local authorities in various European and American cities and towns have resorted to the use of aerial imagery supported by artificial intelligence and machine learning and other modern technologies to inspect and evaluate properties, and then impose appropriate tax fees on their owners.

 · · 13 November 2023

Indonesia makes health data available at one’s fingertips

Following the footsteps of other countries' successful digital experiences, Indonesia is working to create a unified electronic medical record system that includes individual health history, and allows information to be easily shared between health facilities, referenced and updated at any time.

 · · 1 November 2023

One-Stop-Shop: Citizens-centred focus to digital government services

Cities around the world are joining the race to digitize public services. A trend, which has recently emerged to enable people to document and conduct major events and transactions in their lives remotely through digital platforms that bring together several government services via a single portal such as in the United States and Singapore.

 · · 1 November 2023
1 2 3 76